GOODTAKE Color Temperature and Ambient Light Sensor

Description

The GT442-DRGB-S2 device will perform color temperature measurement, brightness sensing. An internal state machine provides the ability to put the device into a low power state between color temperature measurement providing very low average power consumption.

GT442-DRGB-S2

ODIANE

Features

•Color Temperature and Ambient Light Sensing

-Low Power Management

- -I²C Fast Mode Interface Compatible
- -16 Bit resolution
- -IR blocking filters

-Programmable Gain & Integration Time

Power Management

-Low Power 1uA Sleep State

●I²C Interface Compatible

-Up to 400kHz (I²C Fast Mode) -Device addr. : 7'b1000_011

Applications

- •Brightness Sensing
- •Color Temperature Sensing
- Notebook
- •Handheld device
- •Industrial and medical application

Function Block Diagram

The pull-up resistors RP0 are required, 200Ω resistors can be used. The capacitors (C1, C2) are required for power supply. The capacitors should be placed as close as possible to the

The capacitors (C1, C2) are required for power supply. The capacitors should be placed as close as possible to the device. The high frequency AC noises can be shunted to the ground by the capacitors. The transient current caused by digital circuit switching also can be handled by the capacitors. A typical value $0.1 / 4.7\mu$ F can be used.

The pull-up resistors (R1, R2) are required for I²C communication. At fast speed mode (400kHz/s) and VBUS = 3V, $1.5k\Omega$ resistors can be used.

Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN	MAX	UNIT
VDD	Power Supply Voltage	-0.5	3.6	V
Vin	Input Voltage	-0.5	VDD	V
Vout	Output Voltage	-0.5	VDD	V
Ţ	Junction Temperature	-40	85	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute- maximum-rated conditions for extended periods may affect device reliability.

Note 1: All voltage values are with respect to VSS.

Recommended Operation Conditions

SYMBOL	PARAMETER	MIN	ТҮР	MAX	UNIT
VDD	Power Supply Voltage	2.6	3.3	3.6	v
Vin	Input Voltage	0		VDD	V
Vout	Output Voltage	0	Ċ	VDD	V
ТА	Operating ambient temperature	-30		70	°C

Electrical Characteristics (VDD = 3.3V, Ta = 25°C)

PARAMETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
3	Active	ý	300	350	6
Supply Current	Sleep (@ADDR high)		1	10	uA
	Sleep (@ADDR low)		16	25	un
SDA outputlow voltage	3mA sinkcurrent 6mA sink current	0 0		0.4 0.6	V
LowLevel Input Voltage				0.6	V
HighLevel Input Voltage		VDD*0.7			V

GOODTAKE

GODINKE

Data Transmission Timing Requirements

PARAMETER	CONDITIONS	MIN	MAX	UNIT
Output Low Level (SDA)	IOL = 4mA		0.5	V
SCL Operating Frequency			400	kHz
Stop and Start Condition		1.3)	us
Hold Time After Repeated Start Conditions		0.6		us
SCL Clock Low Period		1.3		us
SCL Clock High Period		0.6		us
Repeated Start Condition Setup Time		0.6		us
Data Hold Time		0	0.9	us
Data Setup Time		100		ns
Clock/Data Fall Time	\mathcal{O}		300	ns
Clock/Data Rise Time			300	ns
Stop Condition Setup Time		0.6		us

GOODLAKE

CARE

GOODTAKE

GT442-DRGB-S2

Optical Characteristics (VDD = 3V, Ta = $25^{\circ}C$)

PARAM	IETER	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
Á	R			630	N	nm
	G			550		nm
Peak_	В			480		nm
Sensitivity Wavelength of ADC	С		4	590		nm
of ADC	IR	T.		870		nm
	R	Atr.		3730		counts
Counter Value of ADC	G			8635		counts
	В	5700K WLED, 1000Lux,Integration Time 10ms, AGAIN=1		7545		counts
	С	Toms, AGAIN=1		15830	S,	counts
	IR			50	37	counts
Dark Count	t Value	Dark,Integration Time 100ms, AGAIN=1	0	3	6	counts
ADC coun	t Range		0		65,535	counts
\sim		AGAIN = 0		1		
		AGAIN = 1	7	1.5		
Gain sc	aling	AGAIN = 2		2		x
		AGAIN = 3		2.5		1
		GOE			.00	

.000TAKE

Typical Performance Characteristics

Detailed Description Overview

The GT442-DRGB-S2 light-to-digital device provides on-chip RGBC and IR diodes, integrating amplifiers, ADCs, accumulators, clocks, buffers, comparators, a state machine and an I^2C interface. Four integrating ADCs simultaneously convert the amplified photodiode currents into a digital value providing up to 16 bits of resolution.

The device connects to a video processor or image sensor through a standby I^2C interface which supports up to 400-kbits/s data rate. The digital interface supports IO levels from 1.8V to 3.3V.

Feature Description

System State machine

The GT442-DRGB-S2 device provides ambient light and color temperature sensing. The internal state machine manages the operation of the device. It controls the RGB functionality and power down modes. Average power consumption is managed via control of variable endurance low power wait cycles. The advanced digital color light sensor portion of the GT442-DRGB-S2 contains a segmented circular photodiode array used for color measurements.

This architecture provides stable color sensing independent of the incident angle of light. Five integrating analog-to-digital converters (ADCs) integrate light energy from photodiodes simultaneously.

Communication with the device is accomplished through a fast (up to 400 kHz) two wire I² C serial bus for easy connection to a microcontroller or embedded controller. The device typically draws only 300uA in color operation and 1uA during power down.

GT442-DRGB-S2

Programming I²C Protocol

Interface and control of the GT442-DRGB-S2 is accomplished through an I^2C serial compatible interface (standard or fast mode) to a set of registers that provide access to device control functions and output data. The device supports a selectable I^2C address between b1000_011 using 7-bit addressing protocol.

The I²C standard provides for three types of bus transaction: read, write, and a combined protocol. During a write operation, the first byte written is a command byte followed by data. In a combined protocol, the first byte written is the command byte followed by reading a series of bytes. If a read command is issued, the register address from the previous command will be used for data access.

Register Maps

							1		-
Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF
0x80		RESERVED		DARK_EN	RESERVED	W_EN	RGB_EN	PON	0x00
0x81	IRG	AIN	AC	GAIN	W_TIME	C	RGB_TIME		0x00
0x82	DEVICE ID								0x24
0x83	REVISION ID							0x00	
0xA0	ADC_R[7:0]							0x00	
0xA1	ADC_R[15:8]							0x00	
0xA2	ADC_G[7:0]							0x00	
0xA3	ADC_G[15:8]							0x00	
0xA4	ADC_B[7:0]								0x00
0xA5	ADC_B[15:8]								0x00
0xA6	ADC_C[7:0]							0x00	
0xA7	ADC_C[15:8]							0x00	
0xA8	ADC_IR[7:0]								0x00
0xA9	ADC_IR[15:8]								0x00

Enable Register

Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF
0x80)	RESERVED		DARK_EN	RESERVED	W_EN	RGB_EN	PON	0x00

FIELD	BITS	DESCRIPTION
DARK_EN	4	Dark Offset cancellation Enable.
W_EN	2	Wait State Enable.
RGB_EN	1	RGB, Clear and IR controller Enable.
PON	0	Power ON. This bit activates the internal analog circuit to permit the timers and ADC channels to operate. Writing a 1 activates analog circuit. Writing a 0 disables analog circuit. During reads and writes over the I ² C interface, this bit is temporarily overridden and analog circuit is enabled, independent of the state of PON.

8

GT442-DRGB-S2

Gain & Time control Register

Addr	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	DEF
0x81	IRGAIN		AG	AIN	W_TIME		RGB_TIME		0x00
)	

FIELD	BITS	DESCRIPTION
IRGAIN	[7:6]	IR Gain 0 : 1x, 1: 0.5x, 2: 0.25x, 3: 0.125x
AGAIN	[5:4]	Analog Gain 0 : 1x, 1: 1.5x, 2: 2x, 3: 2.5x
W_TIME	3	WAIT Time 0 : 10ms, 1: 100ms
RGB_TIME	[2:0]	Optical Integration Time 0: 10ms, 1: 20ms, 2: 40ms, 3: 80ms 4: 100ms, 5: 200ms, 6: 400ms, 7: 800ms

ADC Data

			REVISI ADC_ ADC_F ADC_ ADC_C ADC_C	CE ID ION ID R[7:0] R[15:8] G[7:0] G[15:8] B[7:0]				0x24 0x00 0x00 0x00 0x00 0x00
			ADC_ ADC_F ADC_ ADC_C ADC_C	R[7:0] R[15:8] G[7:0] G[15:8]				0x00 0x00 0x00 0x00
		Ċ	ADC_F ADC_ ADC_C ADC_C	R[15:8] G[7:0] G[15:8]				0x00 0x00 0x00
		Ċ	ADC_ ADC_C ADC_	G[7:0] G[15:8]				0x00 0x00
		6	ADC_C	G[15:8]				0x00
		6	ADC_					7
		0		B[7:0]			\sim Y	0.00
								0x00
			ADC_E	B[15:8]			O^{*}	0x00
	ADC_C[7:0]							
	`)		ADC_(C[15:8]				0x00
ADC_IR[7:0]							0x00	
			ADC_I	R[15:8]				0x00
				AK	>			
					ADC_IR[15:8]	ADC_IR[15:8]	ADC_IR[15:8]	ADC_IR[15:8]

FIELD	DESCRIPTION
DEV_ID	Device ID (0x24)
REV_ID	Revision ID (0x0)
ADC_R	RED data
ADC_G	GREEN data
ADC_B	BLUE data
ADC_C	Clear data
ADC_IR	IR data

Package Outline Dimensions

Notes: All dimensions are in millimeters. Tolerance is ±0.2 unless otherwise noted.

GT442-DRGB-S2

Reflow Soldering Profile

Antistatic Dry Pack

Opto devices in SMD package may be sensitive to moisture. Devices are taped & reeled, sealed in antistatic bag with silica gel desiccants.

Do not open the sealed moisture-proof bag before ready to use. If sealing is void, baking treatment may be required.

Storage

Shelf life – Devices should be stored in its original packing, in a controlled environment of temperature less than 40 $^{\circ}$ C and relative humidity below 90%.

Suggested shelf life is12 months in its original packing.

Floor life – 72 hours in controlled environment, Tamb <30 °C, RH <60%. Time between soldering and removing from moisture barrier bags must not exceed the time indicated in J-STD-020. Moisture Sensitive Level classification: LEVEL 4

Drying (Baking Process)

If original packing is voided (such as faded silica gel or exceeded storage time), baking treatment should be performed with the following conditions: T bake = 40 + 5 °C, RH <5%, Time =192hours.